

Failure Mechanisms in Composite Structures D-STANDART Technical Workshop Delft, 8 of February 2024

J.A. Pascoe, F.M. Monticeli (TUD)

Funded by the European Union

Fatigue in Composites - Definition

Fatigue in composites is the phenomenon/mechanism by which fluctuating (service) loads induce **permanent structural changes** through the **initiation and propagation of damages**. These changes include a loss of material stiffness and/or load carrying capability which may lead to **structural failure below the monotonic failure stress**.

Taxonomy

- What breaks?
 - Matrix

Hallett et al (2009)

Thesis Xi Li, (2022), TU Delft

Taxonomy

- What breaks?
 - Matrix
 - Fibres
 - Fibre-Matrix interface

10,000 357,000 1,223,000 Gamstedt & Talreja (1999)

Taxonomy

- What breaks?
 - Matrix
 - Fibres
 - Fibre-Matrix interface

- What type of thing breaks?
 - Constituent
 - Matrix cracking (transverse, splitting)
 - Fibre fracture
 - Core failure (sandwich)
 - Interface
 - Fibre-matrix disbonding
 - Delamination

-2-The lands Kar / Day manager a way war 1 Ch. 1 1000 921 States Barriel Barriel 1.44 1/17/2024 100µm JEOL X 250 5.0kV LEI LМ WD 15.0mm 16:56:49

Image: Wenjie Tu

standart

Damage Evolution

- Multiple damage modes occur simultaneously
- Dominant damage mode varies with stress and life
- High cycle fatigue
 - Matrix cracking
 - Delamination growth

Number of cycles

Damage Mechanisms in Detail

Matrix Crack Density

- Crack density is a function of:
 - Ply group thickness (thicker transverse ply group causes earlier crack initiation)
 - Stress level

standart

• Fibre orientations in adjacent plies

0.4

Matrix Crack Damage Progression

In regions of uniform stress

- Crack initiation at free surfaces (lower energy)
- Saturation of matrix cracks
- Crack growth
- Uniform material degradation
- Localized growth/degradation possible at stress risers (notches, etc.)

Hallett et al (2009)

Matrix Crack Damage Progression

Instant through-width growth

Saturation

standart

Matrix Crack Penetration/Deflection

- Matrix crack interrupts load path in cracked ply
- Redistribution of load
- Penetration/deflection of crack determined by energy release rate

Matrix Crack Penetration/Deflection

Matrix crack interrupts load path in cracked ply

- Redistribution of load
- Penetration/deflection of crack determined by energy release rate

tandart.

Takeda et al. (1995)

Figure 3 Delamination growth from a tip of a transverse crack in T800H/3631 $[0/90_4/0]$ laminate, s = 0.80: (a) n = 7000; (b) n = 10000; (c) n = 20000; (d) n = 30000; (e) n = 40000

Fibre fracture – matrix crack interaction

Stress redistribution around crack

Damage initiation and growth in matrix

JOURNAL OF MATERIALS SCIENCE 34 (1999) 2535–2546 Gamstedt & Talreja

Fibre failure

Fibre failure starts in 1st cycle

Fibre strength is stochastic

O. Castro et al.

Polymer Testing 74 (2019) 216–224

1 cycle

111 cycles

15000 cycles

35000 cycles

Stress redistribution around crack

Damage initiation and growth in matrix

O. Castro et al.

Polymer Testing 74 (2019) 216-224

(c) 1000 cycles

(d) 6076 cycles

O. Castro et al.

Polymer Testing 74 (2019) 216-224

Initiation of new fibre damage

standart

Strain energy release rates - cracks

- Load: P = S (Wt)
- Elongation: $\delta = (S/E)H$
- Elastic energy (potential energy):

$$U = \frac{1}{2}P\delta = \frac{1}{2} \cdot SWt \cdot \frac{S}{E}H = \frac{1}{2}\frac{S^2}{E} \cdot HWt$$

- HWt = plate volume
- ¹/₂S²/E = strain energy density (strain energy per unit volume)

Strain energy release rates - cracks

- Lower stiffness
- Less energy will be stored in plate at same elongation
- \Rightarrow Elastic strain energy relaxation

Strain energy release rates - cracks

- Small reduction in stiffness
- Small relaxation of elastic strain energy ΔU at same elongation

$$\Delta U = \frac{K^2}{E^*} \Delta a$$

 $E^* = E$ (plane stress) $E^* = E/(1-v^2)$ (plane strain)

• "Crack driving force"

$$G = \frac{dU}{da} = \frac{K^2}{E^*}$$

standart

Predicting Delamination Growth

Calculate analytically or with FE

G = f(load, delamination length) $\frac{da}{dN} = CG_{max}^{n} \text{ or } C\Delta\sqrt{G^{n}} \text{ or } C\Delta G^{n}$ $\Delta a = \frac{da}{dN}\Delta N$

 $a = a_0 + \sum \Delta a_i$

Iterate to generate *a* vs *N* curve

Fibre Bridging

L. Yao et al./Composites: Part A 63 (2014) 103–109

L. Yao et al. / Composites: Part A 63 (2014) 103-109

How to deal with this?

Possible to reconstruct 'bridging free' curve as worst case?

Effect of fibre orientation Prior results at TUD

0//0

"Classical" fibre bridging

0//45

0//90

Oscillatory migration

Bundle pull-out

Fibre orientation effect

Stacking sequence (Fiber orientation)

Fatigue test

standart

Removing the Fibre bridging effect

27/02/2024 - CONFIDENTIAL - GA 101091409

standart

Adding the Fibre bridging effect

Summary

- Fatigue damage growth in composites is a complex process

 Matrix cracks, fibre fracture, delamination
 Distributed damage
 Interaction between damage modes
- Delamination can be predicted by calculating SERR
- Fibre bridging affects growth rate at a given SERR
- Fibre orientation affects fibre bridging effect
- Fibre bridging must be taken into account to capture the effect of fibre orientation in the Paris fatigue curves

Back-up Slides

Final failure when fibre break clusters too large, or if clusters link up

standart

Thank you!

Contact points for any question:

- Presenters
 -) John-Alan PASCOE(TU Delft)
 -) Email: j.a.pascoe@tudelft.nl
 - **)** Francisco MONTICELI(TU Delft)
 -) Email: <u>f.m.monticeli@tudelft.nl</u>

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

